
Fluctuation-induced first-order phase transitions near mean-field tricritical points in solids

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys.: Condens. Matter 5 4419

(http://iopscience.iop.org/0953-8984/5/26/013)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 11/05/2010 at 01:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/5/26
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys.: Condens. Matter 5 (1993) 44194428. Printed in the UK 

Fluctuation-induced first-order phase transitions near 
mean-field tricritical points in solids 

A P Levanyuktt, S A Minyukovx and M Valladet 
t Universit6 Joseph Fourier, Labomtoke de Spenmmetrie Physique, Boite Ponale 87,38402 
Saint-Martin-d‘H&cs a d e x ,  France 
t Institute of Cryshllogmphy, Russian Academy of Sciences, 117333 Moscow, Russia 

Received 4 January 1993 

Abstract. We consider displacive phase transitions wiul a one-component order parameter near 
what would be atricritical point (TCP) in the mean-field approximation. As lhe system in question 
is a solid, a continuous phase bansition is generally impossible. It is shown that, along a fairly 
large portion of the phase transition line, a fluctuation-induced first-order phase transition occurs 
within the region of applicability of the pMurbation theory. Close to the mean-field TCP lhe 
hrstarder phase @ansition proves to be slrong. i.e. the discontinuity of lhe order p m e t e r  is 
of the same order of magnitude as the order parameter at T = 0. Below T. the tempemre 
dependence of the order parameter is given by an equation containing a non-analytical term 
relaled Lo the critical fluctuations, and the other thermodynamic anomalies are governed by this 
(renormalized) tempenlure dependence of the order parameter. The present theory shows thal 
first-order Vansitions which are accompanied by m n g  precursor anomalies in the symmebieal 
phase, as is the me for ammonium chloride and quartz, would very likely be second order in 
the mean-field approximarion. 

1. Introduction 

It has been recognized for a long time that the condition of applicability of the Landau theory 
near a tricritical point (TCP) deserves special discussion [I]. If the phase transition under 
consideration occurs in a liquid, the situation is relatively simple; the classical (mean- 
field) picture is correct (up to logarithmic corrections [Z]). This result is fairly natural. 
The coefficient of the quartic term in the order parameter expansion of the thermodynamic 
potential is zero at the TCP and it is precisely this term which is responsible for the interaction 
between the order-parameter fluctuations, leading to the non-classical behaviour in three.- 
dimensional space. The situation is not so simple, however, when the phase transition occurs 
in a solid. In this case the medium has a non-zero shear modulus p ,  and the homogeneous 
and inhomogeneous strains are governed by different elastic moduli. This has two main 
consequences. 

(i) The order-parameter fluctuations renormalize the bulk elastic modulus K, so that 
macroscopic elastic instabiIity and a first-order transition can occur before the continuous 
transition point of the ‘ideal’ (incompressible) system is reached [3,4]. This happens as 
soon as the specific heat of the ‘ideal’ system diverges (a continuous transition could only 
occur at a very high pressure in this case [SI). At d = 3, divergence of the specific 
heat is expected for a one-component order-parameter second-order phase transition (in the 
absence of long-range interactions) and for TcPs, whatever the number of components of 
the order parameter. In this latter case the specific heat is strongly divergent (proportional 
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to (T - TC)-’I2) so that a more pronounced discontinuous character of the transition is 
expected. 

(ii) The lowest-order interaction between the order-parameter fluctuations does not 
disappear close to the ‘mean-field TCP’ (i.e. the TCP which would correspond to p = 0). 

Therefore, the question arises of the self-consistency of the perturbation approach when 
p is different from zero; does the fluctuation-induced first-order transition occur at a point 
where the criterion of smallness of the critical fluctuation effects is fulfilled [6]? How far 
from the mean-field TCP is this true? This problem has been already considered by Bruno 
and Sak [7], in the framework of a general analysis of a compressible king system by group 
renormalization techniques. 

The purpose of the present paper is to give a more detailed analysis of the specific 
problem of the vicinity of the TCP, using what we think to be a simpler formulation which 
has already been used but for transitions which are far from the TCP [SI. Furthermore 
the role of the displacive character of the transition, which is known to be important in 
determining the range of applicability of the perturbation theory, is emphasized, and our 
results are expressed as functions of the two small parameters which control the perturbation 
expansion: TJT, (where Tat is an ‘atomic’ temperature of about l@-105 K) and p / K .  
An order of magnitude of the importance of fluctuations in two typical materials which 
exhibit a structural phase transition is estimated, with the conclusion that these fluctuations 
are sufficiently large to account for the observed iirst-order character of these transitions. 

The paper is organized as follows. In section 2 we derive the perturbation theory close 
to the mean-field TCP. In section 3, the role of fluctuation in ammonium chloride and quartz 
is estimated through their contribution to the elastic constant in the symmetrical phase, and 
in section 4 we summarize our results and we make some additional remarks about possible 
extensions of the perturbation theory to multi-component order-parameter systems. 

A P Levanyuk ef ai 

2. Perturbation theory 

The effective continuous-media Hamiltonian has the form of the Landau thermodynamic 
potential 

W v ,  uid = / [%,(a) +(P&. u)ldu (1) 

and 

(3) cou(v,u) = r a  UII + i K u l l + ~ ( u i a - ~ u ~ ~ 6 i t ) 2  

where q is the order parameter and UI is the strain tensor. We shall assume that the 
coefficient A in equation (2) is the only temperature-dependent coefficient: A = A’(T-To). 
The other coefficients do not depend on temperature but may depend, for example, on 
pressure. This assumption is made for simplicity only and the results given below can 
easily be generalized. 

It is assumed that the effective Hamiltonian is obtained as the result of a partial 
integration of the partition function over all the degrees of freedom but the long-wave 

2 1 2  
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Fourier components of q(r) and &(r), i.e. these two functions contain Fourier components 
with k < k, only, where k, is the cut-off vector (which does not enter the real results of 
the theory). To find the thermodynamic quantities, one has to integrate over all the degrees 
of freedom but those probed in the experiment. For our purpose it will be enough to leave 
unintegrated the zero Fourier component of the order parameter (a) only. As the effective 
Hamiltonian ( I )  is quadratic in the strain components, it is possible to minimize over the 
elastic degrees of freedom instead of the integration if one is interested in the phase &ansition 
anomalies but not in the normal (background) parts of the quantities. At this minimization, 
one has to discriminate between spatially homogeneous and inhomogeneous strains: 

where U$ is the homogeneous strain and ui ( r )  is the displacement vector. One has to 
minimize with respect to uyj and u;(k) separately [3]. As a result, one obtains 

where ,L = K + $fi and we put the volume of the system equal to unity. 
It is convenient to single out in the effective Hamiltonian the terms FO depending on 

qo only, the harmonic terms Fh depending on vo and q k  and the anharmonic terms Fa. One 
has 

(6)  I 2 1 - 4  Fo = ? A v o  f iB?o i- d C ~ f  

where 

where 

and 

where 
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The ellipsis (. . .) in equation (10) represents terms which will not be taken into account 
explicitly. 
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Within the perturbation theory, one calculates the terms of the series 

(12) 

where () designate averaging with the help of Fh. The first fluctuation correction to the 
Landau mean-field theory arises from the second term in equation (12). The integration 
over the Gaussian variables qk can be readily performed and, assuming that Dk; >> 
A + 3 B 1 q i  +KO: ,  one obtains 

@(qo) = $[A + ( T / 2 a 2 ) ( k m / D ) 3 B i I ~ :  + : [ E +  ( T k , / ~ ~ D ) 5 C l q ~  

- $17: - ( T / ~ ~ R D ~ " ) ( A  + 3B1i$ + 5Cq:)3'z. 113) 

From the first two terms, one sees that there is a trivial renormalization of the coefficients 
A and B" due Io fluctuatiot& In fact, renormalization also takes place for the coefficients 
A and 381 in the last term of equation (13). as can be seen from the calculation of the 
higher-order terms in equation (12). Since this renormalization is of "0 interest within the 
phenomenological theory, we shall assume in the following that A, B and E1 correspond 
to the renormalized quantities. 

For the subsequent discussion, we have found it convenient to introduce the following 
dimensionless quantities: 

The orders of magnitude of some of these quantities can be found in a way which is 
conventional for displacive transitions 161 by taking 

A' = 1 D Y Tad2 B Y T a p  C N T,d6 

where Ta is a typiFI 'atomic temperature' (T, Y 104-l@ K) and d is the lattice spacing. 
Close to the TCP, B 2: 0 and BI 'v A 5 ( p / K ) ( r 2 / h ) .  BI  is then expected to be of the 
order of Bp/ K Y T,d'p/ K .  Then one obtains 

g n. ( W d m W K )  c = ( T O / T ~ C ) ( K / P ) ~ .  (15) 

Both these quantities are small for displacive transitions. 
Using reduced units, equation (13) can be rewritten 

q ( x )  = 4.' + i b x 4  + i C X 6  - f g ( t  + 3x2 + 5cx4)3'2. (16) 

At first sight, it seems that (p(x) would be negative at large x as soon as g& 2 0.04. 
Let us note, however, that, at very large x ,  equation (16) is no longer correct because the 
assumptions made to deduce equation (13) from equation (12) are no longer valid. A closer 
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investigation indeed shows that the fluctuation correction becomes negligible at large x ,  as 
expected. For small x ,  one has 

p(x) rr $ g t 3 / 2  + f ( t  - 3g&)x* + . . . . 
The fluctuation correction to the coefficient of the quadratic term is small as long as 

(17) 
2 t > 9g = t. 

This condition corresponds to the range of applicability of the perturbation theory [8]. The 
equilibrium condition deduced from equation (16) is 

x [ t  + bx2  + cx4  - g ( 3  + 10cx2)(t  + 3x2 + 5cx4)'/ ']  = 0. (18) 

The two main consequences which follow from the resolution of equation (18) are the 
following. 

(i) A first-order phase transition is driven by the fluctuation term, even for b > 0. 
(ii) For sufficiently small b the first-order transition temperature falls in the range of 

validity of perturbation theory, which ensures the self-consistency of the method. 

These two points have been checked using numerical calculation (figure 1). but they can 
also be understood using simple considerations. Let us assume that close to the transition 
temperature T, the order parameter is such that 

3x2 >> It1 3x2 > 5cx4. (19) 

(The validity of these assumptions will be checked below.) Then, there is a cubic term 
of approximately in the free energy (equation (16)), which obviously leads to the 
occurrence of a first-order transition. 

Figure 1. Temperature dependence of the order 
parameter: 0. solution of equation (18) with b = 0, 
c = 1 and g = 0.Ws; - - -. mean.field curve at the 
tricriticd point (b  = 0, E = I ,  fi = 0); -, fit of the 
permrbvion theory by an 'effective' mean-field theory 
(b=-O.119.c= 1.041.~=0). 

.a.o, .... I ... I. _._.: ' ' .... 
Figure 2. Temperature dependence of the specific h a t  
C. 0. perturbation theory with b = 0, E = I and 
g = 0.00% - - -. tricritical mean-field curve (b = 0, 
E = I .  6 = 0); -, 'effective' mean-field theory 
(b = -0.119, c = 1.041, s = 0) as deduced from the 
I t  shown in figure I .  We note that it is not possible 
to obtain good fits for both the order parameter and the 
specific heat with the same set of panmeters.) 
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Let us first consider the case when the transition is approached along the line b = 0. 
The order-parameter jump and the transition temperature can be calculated from the two 
equations 

One finds that 

xc = (3&/2)(g/~)'/~ 2 ( T ~ T o ) ' % / K )  

Itc( = [(3&/2)g]4'3(1/~)'/3 2 ( T O / T ~ ~ ) " ~ ( ~ / K ) ' .  
(21) 

The jump x, has to be compared with the order parameter far below T,, where xo 2 (l/c)'I4: 

xc/x0 Y ( T ~ / T ~ ~ ) ' ~ ~ ~ ( ~ / K ) ' ~ ~ .  (22) 

Owing to the small exponent 1/12, this ratio is usually not small and the first-order character 
of the transition is found to be quite strong. On the other hand, comparing equations (21) 
and (17) gives 

Itc[ / ;  N 1/3(g2c)'13 2 (Ta/To)'" >> 1. (23) 

This means that the first-order transition is expected to occur in the region of applicability 
of perturbation theory. Using equation (21), one can check that 

3 x : / l t c ~  N 3x:/5cx; 1/(g2c)l13 >> I (24) 

which is consistent with the assumption made in equation (19). Thus we come to the 
conclusion that critical fluctuations are strong enough to trigger a first-order transition well 
before the (mean-field) TCP is reached. 

The strength of the fluctuations is reflected in the precursor increase in the specific heat 
above Tc (figure 2). The anomalous part AC has its maximum at Tc and, at this point, 

AC 2: ( A ' 2 T o / B ~ ) ( g / 4 v 6 )  2 ( T ~ / ~ d " ~ ( K l ~ ) c a  ( T O / T ~ J ' / ~ ( K / W ) A C L  (25) 

where C,, is the 'atomic' (Dulong and Petit) specific heat and ACL is the jump in the 
specific heat within the Landau theory of the second-order phase transition (far from the 
TCP). 

The thermal expansion and the elastic constants are also expected to show the same 
type of behaviour as the specific heat, and anomalies are easier to observe experimentally 
in the case of the displacive phase transition because the relative changes are usually larger 
than for the specific heat. 

In the low-temperature (asymmetrical) phase the entropy change is found to be 

AS = - ~ ( A ' Z T o / B ~ ) [ ~ Z  - g ( t  + 3x2+ ~CX')'']. (26) 

Close to Tc, 



Fluctuation-induced phase transitions near TCPS in solids 4425 

The second term is smaller than the first by a factor &g/x, N (g2c)'p N ( 5 / T , ) z / 3 ,  so that 
the fluctuation contribution to the entropy appears essentially through the renormalization 
of the order parameter x,. The same result also holds for other quantities proportional to 
($) such as the volume change or the optical indices. 

Let us now consider what happens when the coefficient b is positive. As long as b 
is sufficiently small, all the above considerations still hold. The influence of b becomes 
noticeable only when bx: > cx," (see equation (18)), i.e. when 

b 5 (g2c)'13 E (T0/Tat)213. (28) 

In this latter case, one finds that equation (21) has to be replaced by 

By comparing equation (29) with equation (17), one can see that the first-order transition 
falls within the range of applicability of the perturbation theory as long as b c 5. Thus, 
over rather a large range of B (B < ( p / K ) B ) ,  we expect a fluctuation-induced first-order 
transition outside the scaling region ('incipient second-order phase transition'). At the upper 
limit of the range of applicability of the theory (b  'v i) the relative jump is 

- _  

xC/xo N 3&g/& Y (9/f i )g  N m ( p / K )  << 1. (30) 

The transition is then close to a second-order transition. For larger b. one can guess that 
the jump becomes almost unobservable, but a quantitative estimate cannot be derived from 
the present theory. 

Bruno and Sak [7] reached essentially the same qualitative conclusions, although they 
make a CNdW approximation in calculating the fluctuation corr&on to the free energy 
(compare their equation (649) and our equation (13)). 

3. Comparison with experimental results 

The present discussion is relevant for one-component order-parameter systems without long- 
range interactions (proper ferroelectrics or ferrelastics are excluded). A good candidate for 
testing the theory described in the preceding section is an ammonium chloride crystal which 
exhibits a first-order structural phase transition at room pressure. The importance of critical 
fluctuations in this material is clearly demonstrated by the strong temperature dependence of 
the static elastic constant C1, in the high-symmetry phase. An accurate quantitative estimate 
of the fluctuation contribution to this elastic constant can be deduced in this case, from the 
comparison of hypersonic and ultrasonic measurements [9,10]; in the former case the order 
parameter is 'clamped' whereas in the latter case it is 'free'. The difference ACII between 
the high frequency (CpP) and the low frequency (CpI) is directly related to the fluctuations 
of the order parameter [6]: 

ACU = r2T/  ( 4rrJA'(T - T o ) @ )  = ( r z f B t ) ( g f f i ) .  (31) 

Using the data reported in (91% the temperature dependence of AC,,/CPp can actually be 
fitted by equation (31) over a range of temperatures of about 80 K above the transition 
temperature (figure 3). The temperature TO is found to be 236.1 K (G - To N 7 K) and 

(r2/B1CE)g 5 2 . 5  x lo-'. (32) 
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From equations (9) and (14), one has 

A P Leuattyuk et a1 

- 
(BI - B ) / B I  = 1 - b = T ( g / K ) ( r ’ / B i U  = ~ [ ( C I I  - CIZ)/(CII + 2Cdl(rZ/B~)C~~ 

(33) 

(neglecting elastic anisotropy). 

Acll ( 1Q9N/m’)  

T (K1 
260 2 8 0  300 320 

I 
Figure 3. Temperature dependence of the difference 6C11 between hypersonic and ultrasonic 
elastic constants of ammonium chloride, in the high-temperahrre p b  0. experimental data 
reported in IS. 101; -,fit using the formula ACII = 1 5 . 2 5 / ~ ( w i t h  A c t ]  in IO9 N 
m-Z and T in kelvins). 

From equations (32) and (33) and the experimental values of the elastic constants, one 
obtains 

g(l - b)  N 0.03. (34) 

There is also some evidence of strong elastic constant anomalies in the symmetrical phase of 
quartz I1 I]. In this case the situation is complicated by the occurrence of an incommensurate 
phase between the high-temperature B-phase and the low-temperature cy-phase [12]. The 
critical fluctuations related to the incommensurate ordering, however, are important only 
over a very limited range of temperatures above the transition. If is then possible to extract 
the contribution of the fluctuations of the cy+ order parameter ta the elastic constants 
which extends over a larger range of temperatures. The estimate for this contribution is less 
accurately determined than for ammonium chloride; the result leads to an expression very 
similar to equation (34): 

g(l - b) N 0.04. (35) 

We conclude that for both compounds the coefficient g which measures the strength of 
the fluctuations has an order of magnitude of several which is enough to induce the 
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strong ht-order transition tractable within perturbation theory even if b is positive (see 
figure 1). Therefore it would be interesting to re-analyse the thermodynamic anomalies in 
these materials within the framework of the perturbation theory. A quantitative comparison, 
however, would require a careful analysis of the whole set of experimental data (order 
parameter, thermal expansion, specific heat, etc) and it would be necessary first to prove that 
these materials are close enough to the mean-field TCP (b sufficiently small). Furthermore 
it is clear that anisotropy of both the correlations and the elasticity have to be considered 
[13] in a quantitative analysis. We also note that equation (13) is only valid when D k i  
is sufficiently large; far from To some corrections to equation (13) have to be taken into 
account, and the temperature dependence of the coefficient of the Landau expansion can 
also become important. A more detailed analysis of experimental data will be published in 
a separate paper. 

4. Conclusion 

The widespread, almost standard way to interpret experimental data concerning first-order 
structural phase transitions is to use the Landau thermodynamic potential with a negative 
quartic term coefficient. We have shown that such an interpretation may be highly 
questionable, at least for systems for which there is no dramatic suppression of critical 
fluctuations due to long-range interactions. Indeed we have shown that, for systems which 
are close to the mean-field tricritical condition, the critical fluctuations are large enough to 
induce a first-order transition when the solid state elasticity is taken into account (rigidity 
modulus different from zero). This fact was recognized a long time ago [3,4,7] but it was 
usually thought that the first-order character was.a small effect. The important specific 
feature of the mean-field tricritical region -which is pointed out in this paper is that the 
transition has a strong first-order character and that it occurs at a temperature where the 
system can be self-consistently described by perturbation theory, at least for displacive 
systems. Let us note that the term ‘displacive’ should not be understood too literally in this 
case. In fact we mean only that we are considering systems for which there is a region where 
the fluctuation corrections to the mean-field theory can be treated perturbatively; that is 
typically the case for displacive systems, but it can also be the case for some order-disorder 
systems (when there is a strong temperature dependence of the doublewell parameters due 
to phonon renormalization or when there are strong next-nearest-neighbour interactions). 
The vicinity of the mean-field TCP where the perturbation theory is self-consistent is found 
to be fairly broad and one may expect that the present theory is at least qualitatively correct 
for many structural phase transitions where strong precursor phenomena are observed in 
the symmetrical phase. It is very likely that ammonium chloride and quartz fall into this 
category. 

In this paper we have restricted ourselves to the case of a one-component order 
parameter. It is of interest of course to discuss phase lransitions with a multi-component 
order parameter in the same way, but this problem deserves separate considerations. There 
is one case which is simple to treat: the normal-to-incommensurate transition (n = 2 and no 
anisotropy in the order-parameter space). It is straightforward to show that the results of this 
paper are also valid for such a transition and a first-order transition is also expected to occur 
close to the mean-field TCP. This seems to be rather surprising since most observed normal- 
to-incommensurate transitions are found to be continuous. To explain this observation one 
has to assume either that these transitions are far from the TCP or that imperfections of 
the crystal should be considered. The latter explanation seems to be more likely because 
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the 'random field' (phase pinning in this case) defects are known to destroy the long-range 
order in an incommensurate phase, i.e. to smear the second-order phase transition. It is 
natural to believe that they may also have a drastic effect on the fint-order transition. A 
preliminary consideration shows that it is indeed the case, even when the defects are of the 
'random transition temperature' type. A thorough discussion of the role of defects will be 
reported in a forthcoming paper. 
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